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Scales of mass generation for Majorana neutrinos (as well as quarks and leptons) can
be probed from high energy 2 → n inelastic scattering involving a multiple longitudinal
gauge boson final state. We demonstrate that the unitarity of 2 → n scattering puts
the strongest new upper limit on the scale of fermion mass generation, independent

of the electroweak symmetry breaking scale v = (
√

2GF )−
1
2 . Strikingly, for Majorana

neutrinos (quarks and leptons), we find that the strongest 2 → n limits fall in a narrow
range, 136 − 170 TeV (3 − 107 TeV) with n = 20 − 24 (n = 2 − 12), depending on the
observed fermion masses. Physical implications are discussed.
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1. Scale of Fermion Mass Generation: the Puzzle

The standard model (SM) hypothesizes a fundamental Higgs boson to generate

masses for all elementary particles: weak gauge bosons, quarks and leptons. The

masses MW,Z of gauge bosons (W±, Z0) involve the electroweak gauge couplings

(g, g′) and the vacuum expectation value v = (
√

2GF )−
1
2 , while the quark/lepton

masses arise from the product of Yukawa couplings yf and v . Unlike gauge interac-

tion, the flavor-dependent Yukawa couplings yf are completely arbitrary, exhibiting

a large hierarchy ye/yt = me/mt ≃ 3×10−6 between the electron and top quark. No

compelling principle requires the fermion mass generation to share the same mech-

anism as the W/Z gauge bosons. Moreover, the tiny neutrino masses mν & 0.05 eV

could not be generated by such a Higgs boson without losing renormalizability1 or

extending the SM particle spectrum2,3. So far, neither is the Higgs boson found nor

is any Yukawa coupling experimentally measured — the origin and scale of mass

generation remain, perhaps, the greatest mystery.

What is wrong with just putting all the bare masses into the SM Lagrangian

by hand? These bare mass-terms can be made gauge invariant in the nonlinear

realization4, but are manifestly nonrenormalizable. This leads to unitarity violation

in high energy scattering at a scale E⋆. Generically, we define the scale Λx for
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generating a mass mx to be the minimal energy above which the bare mass term

for mx has to be replaced by a renormalizable interaction (adding at least one new

physical state to the particle spectrum). Hence the unitarity violation scale E⋆ puts

a universal upper bound on Λx, i.e., Λx 6 E⋆ .

A mass term for the bare masses MW,Z will cause the high energy 2 → 2 longi-

tudinal gauge boson scattering to violate unitarity at a scale,5,6,7,8

E⋆
W ≃

√
8πv ≃ 1.2 TeV . (1)

This puts an upper limit on the scale of the electroweak symmetry breaking (EWSB)

and justifies TeV energy scale for the construction of the CERN LHC. Similarly,

with the bare mass terms for Dirac fermions (quarks and leptons), an upper bound

on the scale of fermion mass generation can be derived from the 2 → 2 inelastic

scattering f±f̄± → V a1

L V a2

L (V a = W±, Z0),9

E⋆
f ≃ 8πv2

√
Nc mf

, (2)

where Nc = 3 (1) for quarks (leptons). This shows that the upper limit on the

scale of fermion mass generation is proportional to 1/mf and is thus independent

of the classic bound E⋆
W on the EWSB scale. Also, for all the SM fermions (except

the top quark), the limit (2) is substantially higher than E⋆
W . For the scale of mass

generation for Majorana neutrinos, Refs. [10, 11] derived an analogous 2 → 2 bound,

E⋆
ν ≃ 4πv2

mν

, (3)

which is about 1016 GeV (the GUT scale) for typical input mν ∼ 0.05 eV [13].

However, by considering the 2 → n inelastic scattering, f f̄ , νν → nV a
L (n > 2),

it was noted11 that the n-body phase space integration contributes a large energy

power factor sn−2 to further enhance the cross section (in addition to the energy

dependence s1 from the squared amplitude), so the unitarity limit for a fermion

f (ν) would behave like

E⋆
f(ν) ∼ v

(
v

m
f(ν)

) 1
n−1

−→ v , (for n → large) , (4)

which could be pushed arbitrarily close to the weak scale v and thus become in-

dependent of the fermion mass mf for large enough n. This raises a deep puzzle:

is there an independent new scale for fermion mass generation revealed from the

fermion-(anti)fermion scattering into weak bosons? We find the behavior (4) very

counter-intuitive since the kinematic condition forces any 2 → n unitarity limit E⋆

to grow at least linearly with n [12],

√
s > nMW (Z) ≃ n

3
v , −→ E⋆

v
>

n

3
. (5)
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Fig. 1. Realistic estimate of the unitarity bound E⋆ for the scattering processes V
a1
L

V
a2
L

, tt̄, bb̄,

τ−τ+, e−e+, ν
L

ν
L
→ nV a

L
(curves from bottom to top), as a function of n (> 2) .

2. The Resolution and New Upper Limits

2.1. The Resolution

We observe that the resolution to this puzzle has to rely on the additional n-

dependent dimensionless factors in the exact n-body phase space integration which

can sufficiently suppress the E-power enhancement sn−2 mentioned above Eq. (4).

Computing the exact n-body phase space we can formally derive the 2 → n unitarity

limit as follows,12

E⋆ = v



C0 24n−2π2(n−1)̺ (n − 1)! (n − 2)! (2Nc)
δ−2

(
v

mf,ν

)2(2−δ)




1
2(n−2+δ)

(6)

where δ = 1 (2) for the scattering f f̄ , νLνL(V a1

L V a2

L ) → nV a
L , ̺ is the symmetry

factor from the identical particles in the final state, and the constant C0 originates

from the dimensionless coefficient in the squared amplitude (whose possible angular

dependence is included in the exact n-body phase space integration). Since all large

n factors are explicitly counted in (6), we expect that, independent of the detail,

C
1

2(n−2+δ)

0 ∼ 1 reasonably holds and becomes increasingly more accurate as n gets

larger. So, setting C0 ≃ 1 and ̺ ≃ 1 for simplicity we deduce an realistic estimate

of the unitarity limit E⋆ shown in Fig. 1 (where mν = 0.05 eV is chosen). Using

the Stirling formula n! ≃ nne−n
√

2πn , we can then derive the correct asymptotic

behavior from (6),

E⋆ → v
4πn

e
> v

n

3
, (for n ≫ 1) , (7)
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Fig. 2. Precise unitarity limit E⋆
ν of Majorana neutrinos from the scattering processes ν

L
ν

L
→

nV a
L

(curves from bottom to top), as a function of n (> 2) .

in full agreement with the kinematic condition (5).

We see that for V a1

L V a2

L and tt̄ initial states the strongest bound (minimum of

the curve) still occurs at n = ns = 2; while for all light fermions including Majorana

neutrinos the best limit for the scale of mass generation lies at a new minimum with

n = ns > 2 and E⋆ no higher than about 100 TeV, which is substantially tighter

than the corresponding classic 2 → 2 bound. As we observed12, it is the competition

between the large asymptotic linear growth (7) and the strong power suppression

(4) that generates a genuine new minimum scale E⋆
min for all light fermions at

n = ns > 2 , independent of the EWSB scale.

2.2. Scale of Mass Generation for Majorana Neutrinos

For Majorana neutrinos, the dimension-3 bare mass term can be written as

− 1
2mij

ν νT
LiĈνLj + H.c., which takes the gauge-invariant nonlinear form

Lν = − 1

2
mij

ν Lα
i

T ĈLβ
j Φ

α′

Φ
β′

ǫαα′

ǫββ′

+ H.c. , (8)

where Ĉ = iγ2γ0 , Φ = U(0, 1)T , U = exp[iπaτa/v] and Lj = (νLj/
√

2, ℓLj)
T .

We then quantitatively compute the high energy scattering νLνL → nV a
L (nπa)

by using the equivalence theorem6,8,14. The leading amplitude νLνL → nπa is

given by the νL-νL-πn contact interactions in (8) and is of O(mνE/vn) by power

counting15. Defining a real Majorana neutrino field χ = (νL +νc
L)/

√
2 , we compute

the scattering amplitude of 1√
2

[
|χj+χj+〉 ∓ |χj−χj−〉

]
→ (π+)

ℓ
(π−)

ℓ (
π0
)n−2ℓ

for

three cases: (a). n(even) = 2l ; (b). n(even) > 2l ; (c). n(odd) > 3 . Thus, we derive
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the unitarity limit,12

E⋆
ν = v




(

v

mνj

)2
4π

Rmax
νk





1
2(n−1)

, (9)

where Rmax
νk is given by

Rmax
ν1 =

(
n
2 !
)2

(K1,n)2

23n−4π2n−3 (n − 1)! (n − 2)!
, (n = even, ℓ = n

2 ) ,

Rmax
ν2 =

n (K1,n + K3,n)
2

24(n−1)π2n−3 (n − 2)!
, (n = even, ℓ < n

2 ) ,

Rmax
ν3 =

n (K2,n)2

24(n−1)π2n−3 (n − 2)!
, (n = odd) ,

(10)

and Kj,n are functions of n [12]. For n = even , the best limits are from

(Rmax
ν1 , Rmax

ν2 )max, but numerically the bounds from Rmax
ν1 and Rmax

ν2 only dif-

fer by less than 2%. As shown in Fig. 2, we find the optimal limits,

E⋆
min = 136, 158, 170 TeV, located at n = ns = 20, 22, 24, (11)

for mνj = 1, 0.05, 0.01 eV, respectively. This agrees with our estimate in Fig. 1 to

less than about a factor of 1.7 .

2.3. Scale of Mass Generation for Quarks and Leptons

Similarly, we derive the quantitative 2 → n bounds for Dirac fermions — the

quarks and leptons. Consider a pair of SM fermions (f, f ′) which forms a left-

handed SU(2)L doublet FL = (fL, f ′
L)T and two right-handed weak singlets fR and

f ′
R. We then formulate their bare Dirac mass-terms −mfff − mf ′f ′f ′ into the

gauge-invariant nonlinear form,

Lf = −mfFLU

(
1

0

)
fR − mf ′FLU

(
0

1

)
f ′

R + H.c. (12)

Thus we compute the scattering amplitude for |in〉 → (π+)k(π−)ℓ(π0)n−k−ℓ , where

the initial state |in〉 consists of two fermions in the color-singlet channel12. From a

systematical analysis we derive the unitarity limit for quarks and leptons,

E⋆
f = v




(

v

m
f̂

)2
4π

Nc R̂max
j





1
2(n−1)

, (13)

where R̂max
j = (2Rmax

1 , 2Rmax
2 , Rmax

3 ) is a function of n [12]. We depict the numer-

ical bounds E⋆
f in Fig. 3, which shows that the best limits for all light fermions occur

at a new minimum n = ns > 2 with E⋆
b = 24.5 TeV for b quark and E⋆

e = 107 TeV

for electron. These two limits only differ by about a factor 4 .
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Fig. 3. Precise unitarity limits E⋆
f

of quarks and leptons for the scattering tt̄, bb̄, cc̄, τ−τ+,

ss̄, µ−µ+, dd̄, uū, e−e+ → nV a
L

(curves from bottom to top), as a function of n (> 2) .

3. Discussions and Conclusions

We have systematically analyzed the unitarity limits from the 2 → n inelastic scat-

tering (n > 2), which provide a universal upper bound on the scale of mass genera-

tions for Majorana neutrinos as well as leptons and quarks. The numerical results12

are summarized by Table 1, in comparison with the classic 2 → 2 limits 9,11.

Table 1. Summary of our best unitarity limit E⋆
2→n (in TeV) from each scattering ξ

1
ξ
2
→ nV a

L
(nπa) ,

in comparison with the classic 2 → 2 limit E⋆
2→2

(in TeV).

ξ
1
ξ
2

V
a1
L

V
a2
L

tt bb cc ss dd̄ uu τ−τ+ µ−µ+ e−e+ νν

ns 2 2 4 6 8 10 10 6 8 12 22

E⋆
2→n 1.2 3.5 25 33 49 77 84 34 56 107 158

E⋆
2→2 1.2 3.5 148 497 4×103 105 2×105 605 104 2×106 1013

Table 1 shows that the scattering f f̄ → nV a
L (n > 2) does reveal an indepen-

dent scale for the fermion mass generation. Our new unitarity bounds from the

2 → n scattering with n > 2 establish a new scale of mass generation for all

light fermions including Majorana neutrinos and are substantially stronger than

the classic 2 → 2 limits. In particular, for the Majorana neutrinos with typical

mass values mν = 1 − 0.01 eV (as suggested by the current experiments on neu-

trino oscillations, neutrinoless double-beta decay and astrophysics constraints), the

best upper limits on the scale of mass generation are in the range 136 − 170TeV
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(with n = ns = 20 − 24). This is only about a factor 7 weaker than the lowest

bound for the light Dirac fermions (the b quark) despite their huge mass hierarchy

mν/mb ≈ 2 × (10−10 − 10−12) . Hence, these limits are very insensitive to the vari-

ation of fermion masses. Such a strong non-decoupling feature for the scale of new

physics associated with light fermion mass generation is essentially due to the chiral

structure of the bare fermion mass-terms, i.e., the fact that all the left-handed SM

fermions are weak-doublets but their right-handed chiral partners are weak singlets

(or possibly absent in the case of Majorana neutrinos with radiative mass genera-

tion), so the decoupling theorem16 no longer applies. Finally, we have also estimated

the 2 → n unitarity limit on the electroweak symmetry breaking (EWSB) scale via

the scattering V a1

L V a2

L → nV a
L (πa1πa2 → nπa) with n > 2, and find that the

best limit remains to be E⋆
W ≃ 1.2TeV with n = ns = 2 , in agreement with the

customary bound.
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